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The statistical properties of pairwise majority voting over S alternatives are analyzed in an infinite random
population. We first compute the probability that the majority is transitive �i.e., that if it prefers A to B to C,
then it prefers A to C� and then study the case of an interacting population. This is described by a constrained
multicomponent random field Ising model whose ferromagnetic phase describes the emergence of a strong
transitive majority. We derive the phase diagram, which is characterized by a tricritical point and show that,
contrary to intuition, it may be more likely for an interacting population to reach consensus on a number S of
alternatives when S increases. This effect is due to the constraint imposed by transitivity on voting behavior.
Indeed if agents are allowed to express nontransitive votes, the agents’ interaction may decrease considerably
the probability of a transitive majority.
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I. INTRODUCTION

Social choice and voting theory address the generic prob-
lem of how the individual preferences of N agents over a
number S of alternatives can be aggregated into a social pref-
erence. This issue involves collective phenomena, such as
the emergence of a common opinion in a large population,
which have attracted some interest in statistical physics. For
example, the voter �1� and random field Ising models �2�
have been proposed to study how the vote’s outcome be-
tween two alternatives is affected when voters influence each
other. In the case of two alternatives �S=2� the statistical
mechanics of the majority vote model has also been numeri-
cally studied on random graphs �3�. In general, the frame-
work for this kind of studies is the statistical mechanics ap-
proach to socioeconomic behavior �4,5�, which stems from
realizing that the emergence of “macrobehavior” can be the
result of the interaction of many agents, each with their own
beliefs and expectations.

The majority rule can be naturally extended to S�2 al-
ternatives by considering the social preferences stemming
from majority voting on any pair of alternatives, i.e., pair-
wise majority rule �PMR�. This extension however is prob-
lematic, as observed back in 1785 by the Marquis de Con-
dorcet �6�. He observed that the PMR among three
alternatives may exhibit an irrational behavior, with the ma-
jority preferring alternative A to B, B to C, and C to A, even
though each individual has transitive preferences. These so-
called Condorcet cycles may result in the impossibility of
determining a socially preferred alternative or a complete
ranking of the alternatives by pairwise majority voting �see
also Ref. �7� for a relation with the statistical mechanics of
dynamical systems�. PMR is not the only way to aggregate
individual rankings into a social preference �8,9�. However,
the situation does not improve much considering other rules.
For example, the transitivity of social preferences is recov-
ered by resorting to voting rules like the Borda count, where
each voter assigns a score to each alternative, with high
scores corresponding to preferred alternatives. It turns out

that these rules also violate some other basic requirements.
The basic desiderata of a social choice rule are that it should
be able to rank all alternatives for whatever individual pref-
erences �unrestricted domain�, it should be transitive, it
should be monotonic, i.e., the social rank of an alternative A
cannot decrease when an individual promotes A to a higher
rank, and it should be independent of irrelevant alternatives,
i.e. the social preference between A and B cannot depend on
the preferences for other alternatives �independence of irrel-
evant alternatives is important because it rules out the possi-
bility of manipulating the election’s outcome by falsely re-
porting individual preferences�. For example, in plurality
voting each individual casts one vote for his top candidate
and candidates are ranked according to the number of votes
they receive. This satisfies all requirements but the last one,
as vividly illustrated by recent election outcomes �8�.

The discomfort of social scientists with the impossibility
of finding a reasonable voting rule has been formalized by
Arrow’s celebrated theorem �9�. This states that a social
choice rule that satisfies all of the above requirements has to
be dictatorial, that is, there exists an agent—the dictator—
such that the social preference between any two alternatives
is the preference of that agent.

A way to circumvent the impasse of this result is to study
the properties of social choice rules on a restricted domain of
possible individual preferences. For example, in politics, it
may be reasonable to rank all candidates from extreme left to
extreme right. If the preference of each individual has a
“single peak” when candidates are ranked in this order �or
any other order�, then pairwise majority is transitive. It has
recently been shown that pairwise majority turns out to be
the rule that satisfies all requirements in the largest domain
�8�, thus suggesting that pairwise majority is the best pos-
sible social choice rule.

In this paper we first try to quantify how good is majority
rule by estimating the probability that pairwise majority
yields a transitive preference relation in a typical case where
individual preferences are drawn at random. This and closely
related issues have been addressed by several authors
�10–12�.
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Second, we study how the situation changes when agents
influence each other. In particular, as in the S=2 case �1,2�,
we restrict attention to the relevant case where the interaction
arises from conformism �5�. Basically, conformism can stem
from three different reasons �15�. It can be pure or imitative,
because people simply want to be like others. It can be due to
the fact that in some cases conforming facilitates life �instru-
mental conformism�. Or it can be due to people deriving
information about the value of a choice from other people’s
behavior �informational conformism�. In this light, our re-
sults may shed light on a number of social phenomena, rang-
ing from fashions or fanaticism, where conformism may lead
to the rise and spread of broadly accepted systems of values,
to the question of how much information should the agents
share in order to achieve consensus on S items. At any rate,
our discussion will focus on the consequence of conformism
on the collective behavior, without entering into details as to
where this conformism stems from.

We show that the occurrence of a transitive social choice
on a number S of alternatives for any choice of the individual
preferences is related to the emergence of spontaneous mag-
netization in a multicomponent Ising model. We find a phase
diagram similar to that of the single component model �14�
with a ferromagnetic phase and a tricritical point separating a
line of second order phase transitions from a first order one.
The ferromagnetic state describes the convergence of a popu-
lation to a common and transitive preference ranking of al-
ternatives, due to social interaction.

Remarkably, we find that the ferromagnetic region ex-
pands as S increases. Hence while without interaction the
probability P�S� of a transitive majority vanishes rapidly as S
increases, if the interaction strength is large enough, the
probability of a transitive majority increases with S and it
reaches 1 for S large enough. In other words, an interacting
population may reach more likely consensus when the com-
plexity of the choice problem �S� increases.

We finally contrast these findings with the case where
agents need not express a transitive vote �e.g., they may vote
for A when pitted against B, for B against C, and for C
against A�. This is useful because we find that then the prob-
ability of finding a transitive majority is much lower. In other
words, individual coherence is crucial for conformism to en-
force a transitive social choice.

II. NONINTERACTING POPULATION

We shall first describe the behavior of a noninteracting
population and then move on to the interacting case. Let us
consider a population of N individuals with preferences over
a set of S choices or candidates. We shall mainly be inter-
ested in the limit N→� of an infinite population. We limit
attention to strict preferences, i.e., we rule out the case where
agents are indifferent between items. Hence preference rela-
tions are equivalent to rankings of the S alternatives. It is

convenient to represent rankings with matrices �̂i for each
agent i=1,… ,N, whose elements take values �i

ab= +1 or −1
if i prefers choice a to b�a, or vice versa, with a ,b
=1,… ,S. Notice that �i

ba=−�i
ab. Let R be the set of matri-

ces �̂ that correspond to a transitive preference relation.

Clearly the number of such matrices equals the number �R�
=S! of rankings of the S alternatives. Hence not all the
2S�S−1�/2 possible antisymmetric matrices with binary ele-
ments �i

ab= ±1 correspond to acceptable preference rela-

tions. For example, if �1,2=�2,3=�3,1 then �̂�R. We use

the term “ranking” to refer to matrices �̂�R in order to
avoid confusion later, when we will introduce preferences
over rankings, i.e., over elements of R. We assume that each

agent i is assigned a ranking �̂i drawn independently at ran-
dom from R.

In order to compute the probability P�S� that pairwise
majority yields a transitive preference relation, in the limit

N→�, let us introduce the matrix x̂= �1/�N��i=1
N �̂i. The as-

sumption on �̂i implies that the distribution of xab is Gauss-
ian for N→� and it is hence completely specified by the first
two moments �xab	=0 and �xabxcd	= 
G−1�ab,cd which is 0 ex-
cept for 
G−1�ab,ab=1, 
G−1�ab,ad= 
G−1�ab,cb=1/3, and

G−1�ab,ca= 
G−1�ab,bd=−1/3, where we have introduced the
notation M for matrices with elements Mab,cd. The matrix
G−1 can be inverted by a direct computation, and we
find that the matrix G has the same structure of G−1

but with Gab,ab=3�S−1� / �S+1� , Gab,ad=−3/ �S+1�=Gab,cb

=−Gab,bd=−Gab,ca.
Let us first compute the probability PCW�S� that one of the

alternatives is better than all the others. This means that there
is a consensus over the winner, while nothing is assumed for
the relations between the other choices. The preferred alter-
native is known in social choice literature as the Condorcet
winner, and much interest has been devoted to it, since the
presence of such a preferred alternative saves at least the
possibility of electing a favorite choice. PCW�S� is just the
probability that x1,a�0 for all a�1 multiplied by S. In this
way, we recover a known result �11�, which can be conve-
niently cast in the form

PCW�S� = S� 2

�
�

−�

�

e−2y2+�S−1�ln�erfc�y�/2�. �1�

Notice that PCW�S� is much larger than the naive guess
S /2S−1, derived assuming that xab�0 occurs with probability
1 /2 for all ab. Indeed, asymptotic expansion of Eq. �1�
shows that

PCW�S� ��

2

�ln S

S
�1 + O�1/�ln S��

decays extremely slowly for S�1.
The probability that the majority ranking is equal to the

cardinal one �1�2� ¯ �S� is given by the probability that
xab�0 for all a�b. This is only one of the S! possible or-
derings; then the probability of a transitive majority can be
written as

P�S� = S !
�3/�2���S�S−1�/4

�S + 1��S−1�/2 �
0

�

dx̂ exp�−
1

2
x̂ · G · x̂� �2�

where �0
�dx̂��0

�dx1,2¯�0
�dxS−1,S and we defined the product

r̂ · q̂=�a�brabqab and its generalization to matrices r̂ ·M · q̂
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=�a�b�c�drabMab,cdqcd. The normalization factor is com-
puted from the spectral analysis of G.1

We were not able to find a simpler form for this probabil-
ity. Figure 1 reports Monte Carlo estimates of P�S�. For S
=3 we recover the result �10�

P�3� = PCW�3� =
3

4
+

3

2�
sin−11

3
� 0.912 26… . �3�

Again the naive guess P�S��S ! /2S�S−1�/2 based on the frac-
tion of acceptable rankings largely underestimates this prob-
ability. This means that the collective behavior of the major-
ity hinges upon the �microscopic� transitivity of individual
rankings.

III. INTERACTING VOTERS

Let us now introduce interaction among voters. We as-
sume that agents have an a priori transitive preference over

the alternatives, specified by a ranking �̂i�R. We allow,
however, agents to have a voting behavior which does not
necessarily reflect their a priori ranking, that is, we introduce
a matrix v̂i such that vi

ab= +1�−1� if agent i, in a context
between a and b, votes for a�b�. We will first study the case
when v̂i�R, which corresponds to agents having a rational
voting behavior. This means that even though an agent is
influenced by others, she will maintain a coherent choice
behavior �transitivity�. We will contrast this case with that
where the constraint on individual coherence v̂i�R is re-
moved.

To account for interaction, the matrix v̂i depends not only

on agents’ preferences �̂i, but also on the interaction with
other agents. Within economic literature, this dependence is

usually introduced by means of a utility function ui which
agents tend to maximize. Notice that this utility function rep-
resents a preference over preferences �rankings�.

Formally, this utility function depends both on an idiosyn-

cratic term �̂i�R describing the a priori ranking, and on the
behavior of other agents v̂−i�
v̂ j , ∀ j� i�, through the ma-
jority matrix

m̂ =
1

N
�
i=1

N

v̂i. �4�

More precisely, we define a utility function

ui�v̂i, v̂−i� = �1 − 	��̂i · v̂i + 	m̂ · v̂i, �5�

where the last term captures conformism as a diffuse prefer-
ence for aligning with the majority �5,15�. For 	=0 maximal
utility in Eq. �5� is attained when agents vote as prescribed

by their a priori rankings, i.e., v̂i= �̂i ∀ i. On the contrary,
for 	=1 agents totally disregard their rankings and align on
the same ranking v̂i= m̂ ∀ i, which can be any of the S!
possible ones.

Let us characterize the possible stable states, i.e., the Nash
equilibria, of the game defined by the payoffs of Eq. �5�.
These are states v̂i

* such that each agent has no incentives to
change his behavior, if others stick to theirs, i.e., ui�vi ,v−i

* �

ui�vi

* ,v−i
* � for all i. The random state v̂i

*= �̂i is �almost
surely� a Nash equilibrium ∀ 	�1, because the payoff of
aligning with the majority m̂= x̂ /�N is negligible with re-

spect to that of voting according to one’s own ranking �̂i.

Then we have ui��̂i , �̂−i�= �S�S−1� /2��1−	+	O�1/�N��.
This Nash equilibrium is characterized by a majority which
is not necessarily transitive, i.e., which is transitive with
probability P�S��1 for N�1.

Also polarized states with v̂i= m̂ for all i are Nash equi-
libria for 	�1/2. Indeed, with some abuse of notation, when
all agents take v̂ j = m̂ for some m̂, agent i receives a utility

ui�m̂ , m̂�= �1−	��̂i · m̂+ �S�S−1� /2�	. The agents who are

worse off are those with �̂i=−m̂ for whom ui�m̂ , m̂�= �S�S
−1� /2��2	−1��−ui��̂i , m̂�+O�1/N�. Then as long as 	

�1/2, even agents with �̂i=−m̂ will not profit from aban-
doning the majority. Therefore v̂i= m̂ for all i is a Nash equi-
librium. Notice that whether the majority is transitive �m̂
�R� or not depends on whether agents express transitive
preferences �v̂i�R� or not. In the former case the majority
will be transitive whereas if nontransitive voting is allowed
there is no need to have m̂�R and there are 2S�S−1�/2 pos-
sible polarized Nash equilibria. Only in S! of them is the
majority transitive �i.e., when m̂�R�.

It is easy to check that there are no other Nash equilibria.
Summarizing, for 	�1/2 there are many Nash equilibria.
Depending on the dynamics by which agents adjust their
voting behavior one or the other of these states will be se-
lected.

1The matrix G has S−1 eigenvectors of the form z1,k
ab

=�a,k−1 sgn�b−k+1� with k=2,… ,S, and eigenvalue �=3/ �S+1�.
This can be verified by direct calculation. Note that the vectors zk

ab

are not orthogonal, but are linearly independent. Direct substitution
shows that all vectors of the form zj,k

ab =�a,1��b,j −�b,k�+�a,j�b,k are
also eigenvectors of G for 1� j�k, with eigenvalue �=3. Then �
=3 has degeneracy �S−1��S−2� /2. The set of S�S−1� /2 linearly
independent vectors zj,k

ab with 1
 j�k
S allows us to build a com-
plete orthonormal basis of eigenvectors and to compute det G.

FIG. 1. Probability P�S� of a transitive majority ��� compared
to the naive guess S ! /2S�S−1�/2 ���. ��� shows the case of an in-
teracting population with =0.45 and 	=0.8, �see Sec. III�, � show
the same for the unconstrained case.
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IV. STATISTICAL MECHANICS OF INTERACTING
VOTERS

Strict utility maximization leads to the presence of mul-
tiple equilibria, leaving open the issue of which equilibrium
the population will select. It is useful to generalize the strict
utility maximization into a stochastic choice behavior which
allows for mistakes �or experimentation� with a certain prob-
ability �16�. This on one side may be realistic in modeling
many socioeconomic phenomena �4,15,17�. On the other this
rescues the uniqueness of the solution, in terms of the prob-
ability of occurrence of a given state 
v̂i�, under some ergod-
icity hypothesis. Here, as in �17�, we assume that agents have
the following probabilistic choice behavior: agents are asyn-
chronously given the possibility to revise their voting behav-
ior. When agent i has a revision opportunity, he picks a vot-
ing profile ŵ ��R when voters are rational� with probability

P
v̂i = ŵ� = Zi
−1eui�ŵ,v̂−i� �6�

where Zi is a normalization constant. Without entering into
details, for which we refer to Ref. �17�, let us mention that
Eq. �6� does not necessarily assume that agents randomize
their behavior on purpose. It models also cases where agents
maximize a random utility with a deterministic term ui and a
random component. Then the parameter  is related to the
degree of uncertainty �of the modeler� on the utility
function.2

When agent i revises his choice the utility difference �ui
=ui�v̂i , v̂−i�−ui�v̂i� , v̂−i� for a change v̂i→ v̂i� is equal to the
corresponding difference in −H, where

H
v̂i� = − �1 − 	��
i=1

N

�̂i · v̂i −
	

2N
�
i,j=1

N

v̂ j · v̂i. �7�

Hence in the long run, the state of the population will be
described by the Gibbs measure e−H because the dynamics
based on Eq. �6� satisfies detailed balance with the Gibbs
measure.

H in Eq. �7� is the Hamiltonian of a multicomponent ran-
dom field Ising model �RFIM� where each component vi

ab

with a�b is a component of the spin, �̂i represents the ran-
dom field, and the term �	 /2N��i,j=1

N v̂ j · v̂i is a mean field
interaction. Indeed v̂i has S�S−1� /2 components which take
values vi

ab= ±1. The peculiarity of this model is that the

components of the fields �̂ are not independent. Indeed not

all the 2S�S−1�/2 values of �̂i are possible but only those �̂i
�R that are S!. The same applies to the spin components v̂i
when rational voting behavior is imposed. Were it not for this
constraint, the model would just correspond to a collection of
S�S−1� /2 uncoupled RFIMs.

The statistical mechanics approach of the RFIM �13,14�
can easily be generalized to the present case. The partition
function can be written as

Z�� = Tr
v̂i�
e−H =� dm̂ e−Nf�m̂� �8�

where the trace Tr
v̂i�
over spins runs on all v̂i�R when

voting behavior is rational, or over all v̂i otherwise. The free
energy f�m̂� is given by

f�m̂� =
	

2
m̂2 −

1

N
�
i=1

N

ln��
v̂

e��1−	��̂i+	m̂�·v̂� �9�

where once again the sum over the v̂i runs inside R if agents
are rational, or is not limited otherwise. It is evident that f is
self-averaging. Hence in the limit N→� we can replace
�1/N��i¯ with the expected value �1/S ! ���̂�R¯ ��¯	�

on �̂i. It is also clear that the integral over m̂ of Eq. �8� in this
limit is dominated by the saddle point value

m̂ =��
v̂

v̂e��1−	��̂+	m̂�·v̂

�
v̂

e��1−	��̂+	m̂�·v̂ �
�

. �10�

This equation can be solved from direct iteration and
shows that for large enough values of �c there is a tran-
sition, as 	 increases, from a paramagnetic state with m̂=0 to
a polarized �ferromagnetic� state where m̂�0. In Fig. 2 we
plot the result of such an iterative solution for the RFIM
case, i.e., when S=2. Since for some values T , 	 both the
ferromagnetic and the paramagnetic state can be stable, we
have solved for the magnetization m̂ starting both from a

m̂=0 and from m̂=1̂ states. Then we selected the correct
equilibrium state by comparing the free energy of the differ-
ent solutions. The stability of the paramagnetic solution m̂
=0 can be inferred from the expansion of Eq. �10� around
m̂=0, which reads

m̂ = 	J · m̂ + O�m̂3� �11�

where

Jab,cd = Š�vabvc,d��̂	v − �vab��̂	v�vc,d��̂	v‹�. �12�
2A similar picture was found with an adaptive dynamics where

agents learn about their best choice over time.

FIG. 2. Phase diagram for S=2. The plot shows the magnetiza-
tion, while on the bottom we have drawn the line that marks the
instability of the paramagnetic solution.

G. RAFFAELLI AND M. MARSILI PHYSICAL REVIEW E 72, 016114 �2005�

016114-4



Here averages �¯��̂	v over v̂ are taken with the distribution

P�v̂��̂� =
e�1−	��̂·v̂

�
û

e�1−	��̂·û
. �13�

When the largest eigenvalue � of 	J is larger than 1, the
paramagnetic solution m̂=0 is unstable and only the polar-
ized solution m̂�0 is possible. In Fig. 2 the line that marks
the region of instability of the paramagnetic solution is plot-
ted at the bottom.

A. Constrained case, v̂i«R

Here both the individual a priori rankings �̂i and the vot-
ing behavior v̂i of each agent are transitive. Results for the
numerical iteration of Eq. �10� are shown in the inset of Fig.
3 for different values of  and for S=5. Figure 3 shows the
phase diagram for S=2, 3, and 5. The transition from the
paramagnetic phase to the ferromagnetic one is continuous
for intermediate values of �t��c� but becomes dis-
continuous when �t. The transition point t ��� general-
izes the tricritical point of the RFIM �14� �S=2�.

The condition �=1 on the largest eigenvalue � of 	J
reproduces the second order transition line. The line �=1
continues beyond the tricritical point and it marks the border
of the region where the paramagnetic solution m̂=0 is un-
stable �dotted line in Fig. 3�. Below the lower branch of the
�=1 line the paramagnetic solution is locally stable but it is
not the most probable. Indeed, the polarized state m̂* which
is the nontrivial solution of Eq. �10� has a lower free energy
f�m̂*�� f�0�. Still in numerical simulation the state m̂=0 can
persist for a very long time in this region. The polarized
solution m̂* becomes metastable and then disappears to the
left of the transition line in Fig. 3.

With respect to the dependence on S of the phase diagram,
we observe that at →� the phase transition takes place at
	=2/3 independent of S. At the other extreme, for 	=1 we

find that3 J=G−1. The largest eigenvalue of J is thus �
=�S+1� /3 and the condition �=1 implies that

c�	 = 1� =
3

S + 1
. �14�

Hence as S increases the region where the polarized phase is
stable becomes larger and larger. In other words it becomes
more and more easy for a population of agents who influence
each other to become polarized on the same opinion. This is
somewhat at odds with naive expectation, because as S in-
creases the complexity of the choice problem also increases
and reaching consensus becomes more difficult. Indeed, the
probability P�S� to find consensus on S choices in a random
population drops very rapidly to zero as S increases. Never-
theless, the effects of interaction toward conformism become
stronger. We attribute this to the fact that for large S the
fraction of allowed spin configurations v̂�R is greatly re-
duced, thus inducing a strong interaction among the different
spin components. This results in the fact that ordering be-
comes easier and easier when S increases.

B. Unconstrained case

Here the constraint v̂i�R is not imposed, while we keep

�̂�R. This means that an agent can be influenced by other
agents’ preferences to the point of picking an intransitive
preference. In this case all the traces over the v̂i in the above
equations can be computed componentwise, independently,
as in a multicomponent random field Ising model. A direct
computation of the matrix Jab,cd is possible, and yields

Jab,cd = �ac�bd
1 − tanh2��1 − 	��� . �15�

Notice that, for any  and 	, the maximum eigenvalue �
=	
1−tanh2��1−	��� of the matrix 	J is independent of
S and it coincides with that of the RFIM �S=2�. Hence the
phase diagram is that of the RFIM for all S�2. The different
spin components behave independently. The correlation in-
duced by the constraints on the a priori preferences �− i
�R does not influence the thermodynamics properties. Note
that for 	→1 the condition �=1 implies =1 and for 
→� the phase transition takes place at 	=2/3, independent
of S.

V. P„S… WITH INTERACTING VOTERS

The main result of the previous section, that is, the fact
that ordering becomes easier as S increases when rational
voting behavior is assumed for each agent, has interesting
effects on the probability of finding a transitive majority. To
investigate this, we analyze the probability P,	�S� of a tran-
sitive majority in an interacting population. The calculation

3With 	=1, Jab,cd= �1/S ! ��v̂�Rvabvc,d. So Jab,ab=1 and Jab,cd=0
by symmetry if a�c ,d and b�c ,d. Furthermore, Jab,ad depends
only on the relative ordering between a, b, and d in the permutation
v̂. The permutations where a is between b and d, which are 1/3,
give vabvad=−1, whereas the remaining v̂ give vabvad=1. Hence
Jab,ad= /3. Likewise we find Jab,cb=−Jab,ca=−Jab,bd= /3.

FIG. 3. Phase diagram for S=2, 3, and 5 �dot-dashed, straight,
and dashed lines�. Dotted lines mark the region where the m̂=0
phase is unstable. These meet the lines across which the transition
takes place, at the tricritical point ���. Inset: magnetization for
1 /=0.25, 0.5,…,1.75 and S=5 as a function of 	.
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is a generalization of the one presented for the noninteracting
population. Let

ẑ =
1

�N
�

i

N

v̂i.

We want to compute, at a fixed 	 and , the probability
distribution of ẑ. Keeping fixed the realization of the disorder

�̂i, this is given by

P�ẑ�
�̂i�� = N Trv̂i
e−Hv̂i��ẑ −

1
�N

�
i

N

v̂i�
= Ne�	/2�ẑ·ẑ� d�̂ ei�̂·ẑ�

i=1

N

Trv̂i
e��1−	��̂i−i�̂/�N�·v̂i.

Now the term �̂ /�N is small compared to the other one and
we can expand it:

Trv̂i
e��1−	��̂i−i�̂/�N�·v̂i = Trv̂i

e�1−	��̂i·v̂i�1 −
i

�N
�̂ · v̂i

−
1

2N
��̂ · v̂i�2 + ¯�

= Trv̂i
e�1−	��̂i·v̂i�1 −

i
�N

�̂ · �v̂��̂i	

−
1

2N
�

ab,cd

�ab�cd�v̂abv̂cd��̂i	 + ¯� ,

where, again, averages over the v̂ are taken with the distri-

bution �13�. The factor Zi=Trv̂i
e�1−	��̂i·v̂i can be absorbed in

the normalization constant, so that if we reexponentiate the
terms, we find

Trv̂i
e��1−	��̂i−i�̂/�N�·v̂i � Zi exp − � i

�N
�̂ · �v̂��̂i	

−
1

2N
�

ab,cd

�ab�cdJab,cd� .

This gives

P�ẑ�
�̂i�� = N�e�	/2�ẑ·ẑ� d�̂ ei�̂·�ẑ−ŷ�−��̂/2�J·�̂

= N�e�	/2�ẑ·ẑ−�1/2��ẑ−ŷ�·J−1·�ẑ−ŷ�

= N�e−�1/2�ẑ·�J−1−	I�·ẑ+ẑ·J−1·ŷ−�1/2�ŷ·J−1·ŷ

where

ŷ =
1

�N
�

i

N

�v̂��̂i	

and J is given by Eq. �12�. Now one needs to take the
average over P�ŷ�. In general this is a Gaussian distribution

P�ŷ� � e−�1/2�ŷ·A·ŷ �16�

and, considering the ŷ dependence of the normalization N�,

N� � exp�1

2
ŷ · J −1 · ŷ −

1

2
ŷ ·

1

J − 	J 2 · ŷ�
we get

P�ẑ� � e−�1/2�ẑ·K·ẑ �17�

where

K = J −1 − 	I −
1

JAJ + 1/�J −1 − 	I�
. �18�

As before, this probability can be computed to the desired
level of accuracy with the Monte Carlo method.

A. Constrained case

When v̂i�R we have


A−1�ab,cd = Š�vab��	�vcd��	‹�. �19�

Figure 1 ��� shows that the resulting P,	�S� may exhibit
a nonmonotonic behavior with S: first it decreases as P�S�
and then, as the point � ,	� approaches the phase transition
line it starts increasing. If 	�2/3, there is a value S* beyond
which the system enters into the polarized phase and
P,	�S�=1 ∀ S�S*.

B. Unconstrained case

In this case �v̂ � �̂i	= t�̂i where we introduce the shorthand
t=tanh��1−	��. Then A=G / t2 or

P�ŷ� � e−�1/2t2�ŷ·G·ŷ . �20�

In addition

J = �1 − t2�I; �21�

hence, setting f =1−	�1− t2�,

K = � 1

1 − t2 − 	�I −
t2

1 − t2

f

t2I + f�1 − t2�G
. �22�

The behavior of the probability can be understood in
some interesting limits. For →� we get

K  G + O�1 − t2�

which simply states that as the temperature goes to zero the
probability reduces to that of the constrained case, as it
should. Note that K→G also as we approach the critical line
where 1−	�1− t2�→0.

Instead, for 	→0 we have

K →
1

1 − t2�I −
1

I + �t−2 − 1�G� .

The high T limit →0 reads

K  I − 2G−1 + ¯ ,

that is, since the matrix K is diagonal the probability of
finding a transitive majority drops to the trivial one, namely,
S !2−S�S−1�/2. So without the constraint of rational voting the
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probability of a transitive outcome can be greatly reduced.
Again, Monte Carlo simulations are shown in Fig. 2 ���.
Note the marked decrease of the probability of finding a
transitive majority with respect to the constrained and to the
noninteracting case.

VI. CONCLUSIONS

In conclusion we have studied the properties of pairwise
majority voting in random populations. We have computed
the probability that the pairwise majority is transitive when
there is no interaction and found that it decreases rapidly
with S, even though less rapidly than one would naively
guess. Then we have shown that the properties of pairwise
majority in a random interacting population are related to the
properties of a multicomponent RFIM, whith a constraint on

the components which reflects the transitivity of individual
preferences. This model can be solved exactly and features a
ferromagnetic phase where the population reaches a consen-
sus �i.e., a transitive majority� with probability 1. As to the
dependance on the number of voters, we find that the ferro-
magnetic phase gets larger and larger as S increases, meaning
that consensus is reached more easily when the complexity
of the problem �i.e., the number of alternatives� is large
enough.

With respect to the case when rational voting behavior is
not imposed, we note the strikingly different effect that in-
tereaction can have, dependent on how this interaction is
introduced. In fact, if we impose a transitive voting behavior,
the probability to find a transitive majority is increased,
while relaxing this constraint can result in a decrease of this
probability.
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